

Jetting and Floating Help to Put Cable Underground

Willem Griffioen

Non-Pole Expo, Maintenance & Resilience, Tokyo, 19-21 July 2017

Contents

- Introduction
- Installation Techniques
- Jetting Practice
- Floating Practice
- Intelligent tool
- Japan Options
- Software
- Conclusions

Introduction

- Japan by far worldwide leader FttH roll out
- Network almost ready?
- No: No Pole Policy
 - Need to be able to restore service (lifeline) asap
 - Prevent traffic congestion and rescue team blocking due to collapsed poles during disaster (earthquakes, typhoons)
 - No aerial cables spoiling world heritage landscapes
- Demand for new (underground) structures

Introduction

Collapsed poles

Introduction Source MLIT

○無電柱化は、「①防災」、「②安全・快適」、「③景観」の観点から推進

道路の 防災性能の向上

通行空間の 安全性・快適性の確保

良好な景観形成

Introduction

- Ducted solution logical underground choice
 - No damage during typhoons
 - Limited damage during earthquakes
 - Cables can be quickly replaced
- Pre-cabled duct (prefab)
 - Might be advantageous in rural areas, in some cases
- Cables installed in duct in the field
 - Advantageous in urban areas
 - Trenches open over short length and time

Introduction

- Pulling in/out now considered in Japan
- And jetting (blowing) and floating (water)?
 - Blown fibre used in Japan in the eighties
 - Mainly abandoned now for the aerial network
- May be reconsidered for underground network
 - Jetting worldwide used today
 - Many advantages over pulling
 - Works for all kind of cables (no need to be flexible)
 - For long lengths floating becomes popular too

- Techniques to install cables into ducts:
 - Winch pulling

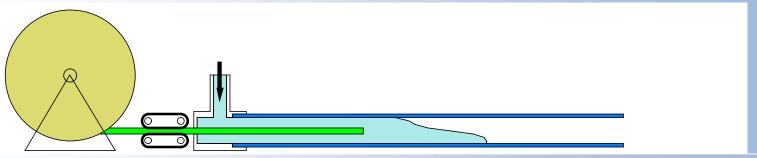
Need to install winch line first
Labour and equipment at both sides duct
Synchronisation problems
Length limited by capstan effect

- Techniques to install cables into ducts:
 - Winch pulling
 - Pushing (rodding)

Disadvantages of winch pulling eliminated

But distance which can be reached further limited

- Techniques to install cables into ducts:
 - Winch pulling
 - Pushing (rodding)
 - Jetting (blowing)


The additionally injected airflow does miracles
Low forces, but distributed, so capstan effect liminated: long lengths!
Bends hardly limit installation length

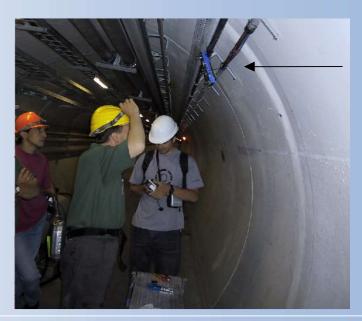
- Techniques to install cables into ducts:
 - Winch pulling
 - Pushing (rodding)
 - Jetting (blowing)
 - Floating

Same trick as jetting, extra help from buoyancy, record lengths!
Allows larger ducts (less flow because of higher viscosity)

- Netherlands 1987 (KPN):
 - Pulling length 10 mm cable in 32/25 mm duct 175 m
 - Invention of Jetting made length increase to 700 m
 - Exclusive licence to Plumettaz
- Worldwide, today (Plumettaz equipment):
 - Jetting lengths up to 3.7 km reached
 - Cable/duct filling rate increased to 80%
- Improvements last ¼ century by:
 - Improved cable, duct and equipment quality
 - Last but not least: lubrication

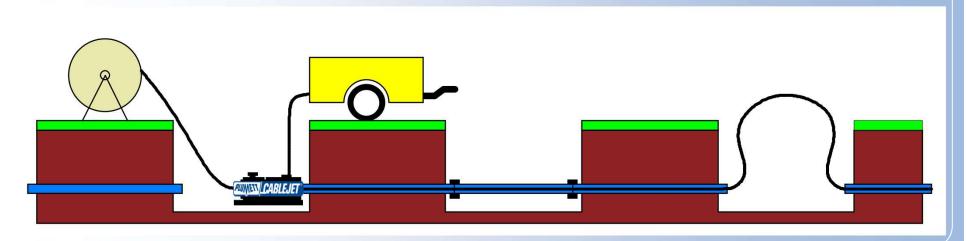
Used for Telecom cables (almost all cables!)

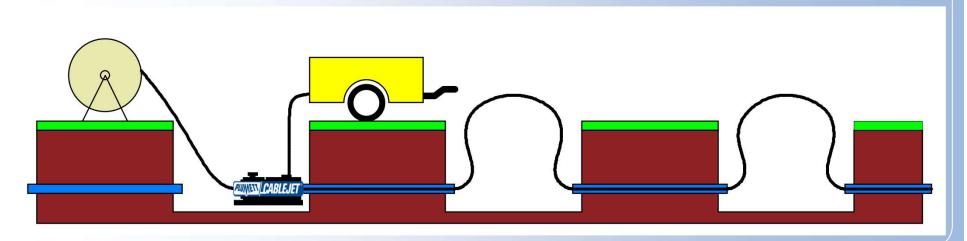
Developed in NL in 1987
For 10 mm cable in 32/26 mm duct
Used until max duct size 63/50 mm


Microduct technology
Also microducts can be jetted in
Cables 1-8 mm, microducts 4-16 mm

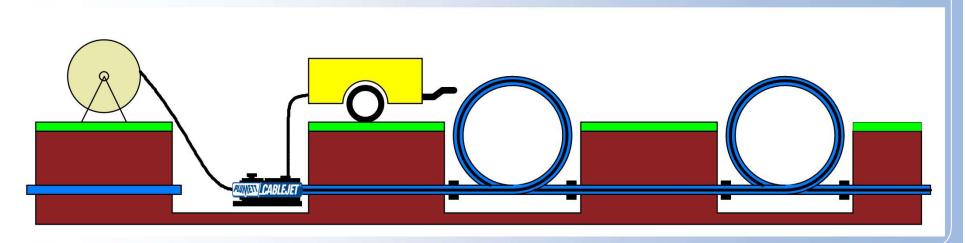
- Example: CERN (Higgs particle)
 - Golden Hadron award 2006, Nobel price 2013
- 1500 km cable, 2500 km microducts
- Jetting record: 3.7 km

Trunk, feeder and distribution cables





- Easy to jet cable overlength
- No pulling needed at open duct end!



- Easy to jet cable overlength
- No pulling needed at open duct end!

- Overlength also possible with duct
- No problems with bends, no capstan effect!

Floating Practice

- A logical follow up after jetting
- Used for Telecom and Energy cables
- Extremely long lengths possible for Floating
 - Limited speed for microducts
 - May require large pump for large energy ducts
 - But for duct sizes 25mm to 63 mm almost no limits
 - Strangely not much used yet for latter application!
 - 10 km already reached for LV cable in 50/40 mm duct

Equipment for microducts (hydraulics + water)

Netherlands

- 7 mm 96 OF cable
- 10/8 mm microduct (narrow fit!)
- 2310 m floated
- 22-25 bar water
- End speed 9 m/min

- Germany (world record for microducts)
 - 5 km of 6.1 mm 96 OF cable in 10/8 mm microduct
- Myanmar
 - 7.2 mm 96 OF cable
 - 14/10 mm microduct
 - 3 to 4 km floated in one go
 - 22-23 bar
 - Average speed 40-50 m/min
 - 8-12 km per day

Extremely large (Energy cables)

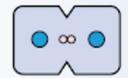
- 82 mm power cable, in 125/102.2 mm pipe
 - 680 m test loop in sea
 - On land 1037 m reached with 19 bends
- 160 mm cable possible, over 20 km or more
 - Mass tuning
 - When too large, use pig (Water PushPull)

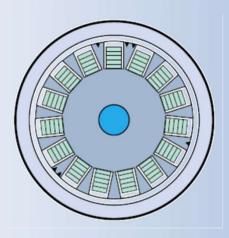
Floating, SensoJet

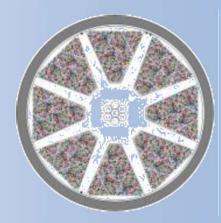
- Extremely small
 - In steeltube or glass tube
 - Helical shape (often)
 - Tube ID: 0.4 5 mm
 - Cables (fibres): 0.16 2 mm
 - 10 km possible with 100 bar
 - Application for sensing:
 - Oil & gas (flex pipes, umbiligals)
 - Energy (power cables, steam pipes in plants)
 - Large mould products

Intelligent Tool

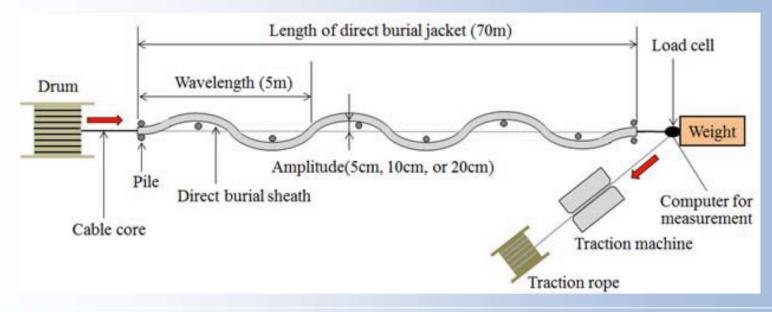
- Monitors and records:
 - Pushing force
 - Slip belts cable
 - Cable velocity
 - Distance
 - Air pressure
 - Air temperature
- Half automated:
 - Shuts off when needed
- Fully automated:
 - Future target




Japan Options

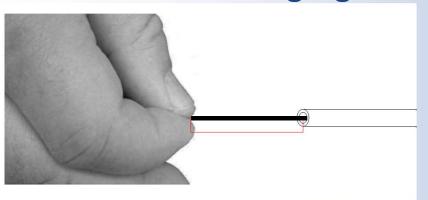


- Wide range of cables
- Most of them suitable for jetting and floating
- FttH drop cables



- Trunk, feeder and distribution cables
 - Example, 1728 OF cable with pliable ribbons

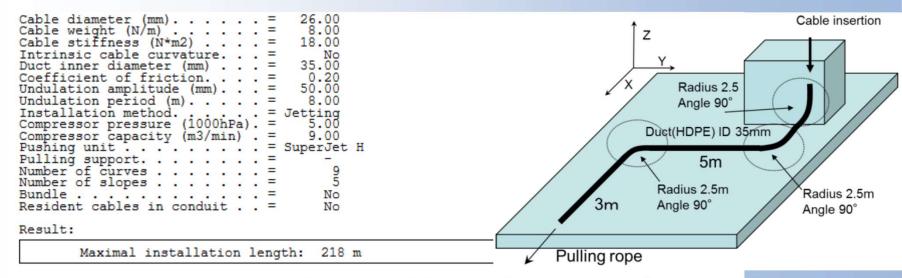
Japan Options


- Prefab cable in duct (or installed in field)
 - For pulling undulations critical for replacement
 - For blowing in or out less critical

Japan Options

- Drop cables
- P2P pusher (air option)
- Free Stroke
 - Wheel more efficient
 - No risk of damaging the cable

Software



- JetPlanner
- Pulling, Pushing, Jetting, Floating
- Cable parameters (also cable stiffness!)
- Duct parameters
- Trajectory parameters (besides bends and slopes also undulations!)
- Example: 1728 OF cable, 26 mm, 8 N/m, 18 Nm² duct 40/35 mm, many bends, 200 m long

Software

Example: Jetting in 2x Japanese pull trajectory, elongated to 200 m and return loop

Curves on (m): 5(2.5/90) 178(2.5/90)		14(2.5/90) 182(2.5/90)			(curve radius(m)/curve 18(2.5/90) 186(2.5/90)			angle(deg) in parenthesis) 22(2.5/90) 100(2.5/180) 195(2.5/90)			
Slope	from	to	incl.	Slope		to	incl.	Slope	from	to	incl.
1 2	(m) 0 18	(m) 18 22	(deg) 0.0 90.0	3	(m) 22 178	(m) 178 182	(deg) -0.0 -90.0	5	(m) 182	20000	(deg) 0.0

Conclusions

- Japanese no pole policy opens the way to new cable installation technologies
- Ducted solution: easy to replace cable
- Jetting technique suitable for Japanese cables
 - High count trunk, feeder and distribution cables
 - Prefab cable in duct or installed in the field
 - Drop cables to the homes (also pushing)
 - Advanced software to calculate installation length
- Floating technique? Next step after jetting?

Thanks for your attention

Distributor Japan: ATECH CO., LTD

本社

PLUMETTAZ S.A.

Route de la Gribannaz 12 1880 Bex, Switzerland エイテック株式会社

〒328-0061 栃木県栃木市新井町1024-7 TEL:0282-20-742

